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Abstract
Introduction: This is the first study of which we are aware to describe the analytical validation (AV) of clinical
grade artificial intelligence (AI) algorithms for a commercially available prostate cancer test performed on
hematoxylin and eosin stained specimens that is not dependent on a priori established molecules or a priori
semantically meaningful morphology.
Methods: We adapted AV methods used in molecular diagnostics and clinical pathology to two AI biomark-
ers used in a clinical test for prostate cancer biopsy specimens. The two algorithms included one algorithm
with prognostic performance and a second algorithm predictive for treatment benefit from short-term an-
drogen deprivation therapy (ST-ADT). We assessed analytical accuracy, intra-operator reliability, and inter-
operator reliability, and biopsy set completeness reliability on two AI algorithms deployed into a clinical
laboratory setting. Analytical accuracy was measured using intraclass correlation coefficient (ICC). Reliability
studies were assessed using ICC for the prognostic algorithm and percent agreement for the ST-ADT clas-
sification algorithm.
Results: Analytical accuracy ICC was 0.991 and 0.934 for the prognostic and ST-ADT algorithms, respectively.
Intra-operator reliability was 0.981 (ICC) and 100% (percent agreement) for the prognostic and ST-ADT al-
gorithms, respectively. Inter-operator reliability was 0.994 (ICC) and 93.3% (percent agreement) for the
prognostic and ST-ADT algorithms, respectively. Biopsy-completeness reliability for one versus three pros-
tate biopsy cores was 0.894 (ICC) and 91.67% (percent agreement) for the prognostic and ST-ADT algo-
rithms respectively. For one versus six cores, reliability was 0.857 (ICC) and 95.00% (percent agreement)
for the prognostic and ST-ADT algorithms respectively.
Conclusion: This study describes a novel approach to AV of AI algorithms in prostate cancer and applies this
approach to two algorithms translated for use as a clinical grade AI-based laboratory test, supporting an-
alytical validity of the test.
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Introduction
There is growing evidence supporting the use of artificial

intelligence (AI) applied to hematoxylin and eosin

(H&E) stained histopathology images to create AI bio-

markers that predict adverse outcomes in prostate can-

cer.1–3 These studies demonstrate clinical validity (CV)

of novel AI biomarkers (e.g., the ArteraAI Prostate bio-

marker) in a research setting. We sought to implement

AI in a clinical laboratory, which calls for protocols for

establishing analytical performance and ensuring consis-

tent high-quality testing for clinical specimens.

While prior guidelines or studies have described ana-

lytical validation (AV) of stains for specific proteins

and AI interpretation of these specific stains,4,5 to date

we are unaware of AV methods that can be generalized

to AI tests on H&E stained images that provide patient-

level rather than slide-level results. Therefore, we

aimed to develop AV approaches to such AI while estab-

lishing AV of the ArteraAI Prostate Test.

Given the dearth of published literature for translating

AI algorithms into laboratory tests and the mounting in-

terest in similar AI tests in the future, it was essential

to develop an AV approach that would both meet specific

projects needs as well as establish a framework that can

broadly be used for other similar AI tests used on non-

specific stains that prognosticate patient level events

(e.g., distant metastasis [DM]).

ArteraAI Prostate Test moves some of the heavy lifting

in the laboratory from a physical to a software workflow.

This abstraction from physical processes using special-

ized equipment and reagents to a workflow based on

more general use devices relying on non-specific stains

has important implications for AV and the definition of

the ‘‘biomarker.’’ Fundamentally, AV of an assay is

based on establishing the ability of the assay to accurately

detect the biomarker of interest.

Therefore, a critical question for the ArteraAI Prostate

Test is ‘‘What are the biomarkers of interest?’’ For an AI

algorithmic test reliant on measuring IHC stains for a pri-

ori specified epitopes, the epitopes themselves are the

biomarkers of interest, and AV of epitope detection

may largely be a matter of probe performance rather

than the software, which is now detecting specific probes

rather than more general tissue morphology.

Alternatively, for an AI algorithmic test that utilizes

non-specific probes (e.g., H&E), the output of the algo-

rithm rather than the algorithm measured input is the

only meaningful biomarker of interest. This is indeed

how Paige Prostate showed AV, using algorithm output

rather than input. However, there remains a fundamental

difference between Paige Prostate and ArteraAI Prostate

Test, which is that Paige Prostate is used to point out a

slide-level finding to a pathologist, specifically regions

of likely cancer within a slide with associated geometric

coordinates on that slide. ArteraAI Prostate Test uses al-

gorithms that yield patient-level findings rather than

slide-level findings, specifically outputs associated with

risks of oncologic endpoints for the patient.

Fundamentally, these challenges reflect the underlying

issue of ‘‘What are the analytes or biomarkers measured

within the ArteraAI Prostate Test?’’ Unlike most labora-

tory tests, for ArteraAI Prostate Test the ‘‘biomarker’’ is

not only algorithm output rather than input, but also out-

put directly predictive of a patient–level clinical outcome

as opposed to a slide-level finding with specific geomet-

ric coordinates. This informs how we assessed AV.

Here, we briefly summarize the operation and CV of

the current ArteraAI Prostate Test followed by an expla-

nation of AV.

Materials and Methods
Descriptions of AI algorithms
ArteraAI Prostate Test utilizes both image data and clin-

ical data in two distinct algorithms, which are described

here along with their CV. These algorithms operate by

breaking a whole slide image into patches and analyzing

the patches as illustrated in Figure 1. More detailed de-

scriptions of the AI architecture are contained in the Sup-

plementary Data. The first algorithm provides AI scores

associated with DM and prostate cancer-specific mortal-

ity (PCSM) (prostate prognostic algorithm or model).

For clinically meaningful interpretation, continuous

probabilistic estimates of 10 year DM risk, 5 year DM

risk, and 10 year PCSM are reported based on monotonic

transformations of the AI scores. The second AI algo-

rithm reports a binary classification with one of the two

following outcomes: (1) Likely to benefit from short-

term androgen deprivation therapy (ST-ADT) or (2)

Unlikely to benefit from ST-ADT as described in Spratt

et al. (the ST-ADT predictive algorithm or model).2

Validations of prior versions of these algorithms have

been previously published,1–3 but descriptions of clini-

cally implemented algorithms are described here.

The test is intended to accept prostate core needle bi-

opsy tissue and can be performed on one to six prostate

cores, including the core with the highest Gleason

Grade. The test also accepts the following clinical vari-

ables, which are provided by the ordering clinician

and/or originating lab for the specimen:

� Age

� Baseline prostate specific antigen (PSA)

� T-stage

Pathologist-assessed Primary, Secondary, and Overall

Gleason Scores were previously captured as clinical var-

iables, but they have been removed to reduce the test’s

dependence on an operator dependent input variable.6–8

The ArteraAI Prostate Test is currently performed as a

laboratory-developed test (LDT) in Jacksonville, FL on a

3DHistech P1000 scanner.

120 GERRARD ET AL.

D
ow

nl
oa

de
d 

by
 2

60
1:

5c
2:

20
1:

23
90

:4
c5

6:
d2

8f
:1

83
9:

fc
d0

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
4/

19
/2

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Summary of clinical validation
CV on algorithm with prognostic performance. We

obtained data from 8 randomized controlled clinical trials

(NRG/RTOG protocols 9202, 9408, 9413, 9910, 0126,

0415, 0521, and 9902). These clinical trials enrolled

over 10,000 patients. Cases from these clinical trials

were used for which clinical data and H&E stained slides

were available yielding a total of 7026 cases. Cases with

missing age, baseline PSA, Gleason grade, T-stage, and

outcome data were excluded. Cases were split into down-

stream model training and selection (n = 5259) and vali-

dation (n = 1767) cohorts.

No data from the training cohort was used in the vali-

dation cohort. H&E stained specimens were digitized on

a Leica AT2. The algorithm was clinically validated for

DM and PCSM using Fine-Gray models (sub-distribution

hazard ratio [sHR] 2.41, 95% confidence interval [CI]

2.05–2.82, p-value <0.001 for DM and sHR 2.59, 95%

CI 2.17–3.10, p-value <0.001 for PCSM) (Table 1).

CV on algorithm with predictive performance. Data

from seven trials (NRG/RTOG 9202, 9413, 9902, 9910,

0126, 0415, and 0521) were used for development, and

the NRG/RTOG 9408 trial was used for validation.

NRG/RTOG 9408 enrolled 2028 patients. Cases from

clinical trials were used for which clinical data and

H&E stained slides were available yielding a total of

3977 cases used for development and 1509 cases from

NRG/RTOG 9408 with 851 NCCN intermediate-risk

cases used for validation. Cases with missing age, base-

line PSA, Gleason grade, clinical T stage, and DM fol-

low-up were excluded. H&E stained specimens were

digitized on a Leica AT2.

Fig. 1. ArteraAI Prostate Tissue Classification and AI. A tissue specimen on a slide is digitized into a single
large image. This image is ‘‘patchified.’’ Each patch is classified as containing tissue or not, and artificial
intelligence is applied to tissue-containing patches. AI, artificial intelligence; PSA, prostate specific antigen.

Table 1. Fine and Gray Regression Results of the Algorithm
Associated with Endpoints: Distant Metastasis and Prostate
Cancer-Specific Mortality in a Multi-Trial Validation Cohort
(n = 1767)

Endpoint sHR (95% CI), p

DM 2.41 (2.05–2.82), <0.001

PCSM 2.59 (2.17–3.10), <0.001

sHRs reported out per 1 standard deviation increase in the algorithm
score.

CI, confidence interval; DM, distant metastasis; PCSM, prostate cancer-
specific mortality; sHR, sub-distribution hazard ratio.
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We assessed CV for predictiveness using the signifi-

cance of ST-ADT treatment interaction of the Fine and

Gray regression model, with a two-sided p-value <0.05

indicative of a statistically significant difference in DM

outcomes due to ST-ADT use between biomarker posi-

tive and biomarker negative patients when comparing

hazard ratios. A total of 276 patients (32%) were classi-

fied as biomarker positive, where additional ST-ADT sig-

nificantly reduced the risk of DM compared with

radiation therapy alone (sHR 0.33, 95% CI [0.15–0.72],

p = 0.006).

In contrast, there was no significant difference between

treatment for biomarker negative patients (n = 575, sHR

1.04, 95% CI [0.57–1.92], p = 0.89). The treatment-by-al-

gorithm interaction for DM was observed ( p = 0.02).

Cumulative incidence estimates of DMs stratified by

biomarker are shown in Figure 2.

Analytical Validity Methods
Before AV of the AI test, we separately validated the

whole slide imaging system as per College of American

Pathology guidelines for digital pathology9 for diagnostic

pathology. We did this via a comparison of a patholo-

gist’s interpretation of glass slides and digitized images

of those slides with a 2-week washout period in between.

These guidelines are intended for validation for human

interpretation using digital pathology rather than AI inter-

pretation. Therefore, while an important step for the lab-

oratory, we deemed it insufficient to establish AV of the

assay using AI analyses.

Before designing AV experiments, we searched the

medical literature, guidelines, and publications from the

Food and Drug Administration (FDA) on other devices.

We found that guidelines exist for AV of numerous ana-

lytical methods, but were able to find no specific guide-

lines on similar tests. We therefore sought to adapt a

hybrid approach to AV informed by AV study designs

from two other devices/devices classes, Paige Prostate.

From the perspective of intended use to a clinician,

other prognostic tests seemed most relevant. In the ab-

sence of FDA-cleared or -approved tests in prostate can-

cer, we examined the FDA’s validation guidance for

devices classed under the NYI device class,10 ‘‘Classi-

fier, Prognostic, Recurrence Risk Assessment, RNA

Gene Expression, Breast Cancer,’’ which is more fully

defined as

A device which uses a gene expression profile of a breast

cancer tumor, from patients stage i or stage ii lymph node

negative, with a tumor size of <5.0 cm, to provide a risk

assessment for distant recurrence of breast cancer. The

result is indicated for use only as a prognostic marker

by physicians along with a number of other factors to as-

sess the risk of recurrence of breast cancer.

includes Mammaprint and Prosigna., developing analo-

gous tests for the relevant elements of each. While the

NYI device class does not include image-based AI

tests, it includes tests such as Mammaprint and Prosigna

that provide algorithmic results regarding prognosis, giv-

ing it a similar intended use in breast cancer to the Arter-

aAI Prostate Test in prostate cancer.

We sought to examine validation methods from tests

that were methodologically similar to ArteraAI Prostate

Test. In developing our approach, we considered that, al-

though Paige Prostate is operates an AI test performed on

H&E stained prostate cancer specimens, it does not

Fig. 2. Cumulative incidence estimates of
treatment arms by biomarker subgroups in the
validation cohort of RTOG 9408 NCCN
intermediate patients (n = 851). (A) The
biomarker negative group. (B) sThe biomarker
positive group. CI, confidence interval; DM,
distant metastasis; Est., estimated; RT, radiation
therapy; RT + ST-ADT, radiation therapy + short-
term adjuvant deprivation therapy; sHR, sub-
distribution hazard ratio.
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provide patient-level results. Therefore, this test’s work-

flow and methodology were the most similar to our test

that we could identify. However, the intended use of

the test is quite distinct from Artera AI Prostate Test,

and since the results of Paige Prostate are slide-level re-

sults rather than patient-level., Therefore, we also consid-

ered AV of tests that provide similar patient-level results

as well.

There are numerous gene expression classifiers that

apply algorithmic analysis to provide statistical results re-

garding patient outcomes (e.g., prognostic tests) in a

number of cancers, most notably in prostate and breast

cancer. Of these tests, we found only two that had FDA

clearance, both of which are breast cancer tests11,12

classed under the NYI device class. While FDA clearance

does not necessarily indicate a superior validation as

compared with LDTs, FDA clearance is one of the

most widely accepted standards for indicating a device

performs its claimed indications. Furthermore, both Con-

gress and the FDA have clearly been considering FDA

oversight of LDTs as evidenced by proposed VALID

Act legislation13 and an FDA-proposed rule14 regarding

the regulation of LDTs. While neither of these has yet be-

come law, this has indicated the importance of being

ready for FDA oversight in laboratory test development

as a means of mitigating evolving regulatory risks.

Analytical accuracy
Analytical accuracy refers to the ability of an assay to de-

tect the analyte of interest. The analytes of interest for

ArteraAI Prostate Test are the outputs of AI algorithms

trained and validated on a Leica AT2.

ArteraAI prostate test was developed and validated on

cases with typically only a small number of cores. In the

validation data set for the prognostic model, having 1 to 2

cores was the most common, and 71% of specimens had

no more than 6 cores. In the validation data set for the ST-

ADT algorithm, having 3 to 4 cores was the most com-

mon, and 69% of specimens had no more than 6 cores.

In combination with the biopsy completeness study re-

sults, tests were done using 1 core.

To establish analytical accuracy, we set AI biomarker

results from cases digitized on a Leica AT2 as the gold

standard against which results in the lab using the 3DHis-

tech P1000 could be compared. We tested the same 60

specimens on a Leica AT2 and the 3DHistech P1000

used in Artera’s CLIA lab. We used the intraclass corre-

lation coefficient (ICC) for establishing concordance.

Reliability Studies
Intra-operator, inter-day study
An experiment was designed to assess consistency of re-

sults when the test was performed on the same specimen

on three distinct days. A single core with the highest

grade cancer from 30 cases was used for these studies.

Specimens were scanned at time 0, after 24 h, and after

48 h for a total of 3 scans on 3 different days of each

case by the same operator. Reliability was evaluated

using ICC for the prognostic model. The associated 95%

CI is calculated using approximate formulas for the stan-

dard error of the ICC estimate.15 Percent agreement was

used to assess reliability for the ST-ADT algorithm.

Inter-operator study
We designed this experiment to assess the consistency of

results when the test was performed by two different op-

erators to ensure consistency between operators. A single

core with the highest grade cancer from 30 cases was

used for this study. Two different operators scanned the

images for analysis. Reliability was evaluated using

ICC for the prognostic model. Reliability was evaluated

using ICC for the prognostic model between the two op-

erators. The associated 95% CI is calculated using ap-

proximate formulas for the standard error of the ICC

estimate.15 Percent agreement was used to assess reliabil-

ity for the ST-ADT algorithm.

Biopsy completeness study
We sought to determine consistency of test results for dif-

ferent numbers of prostate cancer cores, which is analo-

gous to limits of detection and quantification. As noted

above, use of a single core was considered most represen-

tative of the validation data set, but multiple cores, com-

monly 12, are typically obtained in prostate cancer

biopsies. Therefore, we sought to ensure that the test

could perform consistently even with a higher number

of cores as sometimes more than one core may be placed

on a slide, or it may be challenging to identify which core

has the highest grade tumor and be most appropriate

for testing.

To evaluate this, we evaluated 60 cases. For each of

the 60 cases, we ran the test on a single core with the

highest grade tumor (the control), 3 cores including the

core with the highest grade tumor, and 6 cores including

the core with the highest grade tumor. We compared the

results for 1 core versus 3 cores and 1 core versus 6 cores.

Reliability was evaluated using ICC for the prognostic

model. The associated 95% CI is calculated using ap-

proximate formulas for the standard error of the ICC es-

timate.15 Percent agreement was used to assess reliability

for the ST-ADT algorithm.

AV Results
The same overall experiments were used for establishing

AV of both the prognostic model and ST-ADT model,

though statistical evaluation was different, since the

prognostic model outputs a continuous score whereas

the ST-ADT model results are reported as binary. Results

AV OF H&E-BASED AI PROSTATE CANCER TEST 123

D
ow

nl
oa

de
d 

by
 2

60
1:

5c
2:

20
1:

23
90

:4
c5

6:
d2

8f
:1

83
9:

fc
d0

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
4/

19
/2

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



are summarized in Tables 2 and 3 given next for the prog-

nostic and ST-ADT models, respectively. For all AV ex-

periments, the results satisfied pre-specified acceptance

criteria.

Discussion
In this study we sought to establish AV of a clinical grade

AI-based LDT that evaluates morphological features

from non-specific stains to predict patient level out-

comes. We see this as a critical advance for technical

implementation for the use of AI in pathology, as analyt-

ical or technical validation is a critical element of routine

adoption of AI in pathology.16 To our knowledge, AV of

a similar test has never before been published, and meth-

odology has not been described for doing this, requiring

that we first establish appropriate experiments.

While at first glance it may seem that we could readily

adopt approaches used in the AV of other AI products, we

discovered that many of the experiments and questions

addressed in other AI products were simply not applica-

ble to our test.

There were two key issues that required us to develop

novel approaches to determining AV. The first was that

we were establishing AV of a test reliant on non-specific

stains, so measures like primer and probe specificity were

not relevant or readily adapted to a test reliant on H&E.

The second key issue was that we were establishing AV

of an AI biomarker that is trained to predict future events

without relying on specific human-identifiable morpholog-

ical features, so we could not use a pathologist’s indepen-

dent interpretation as a gold standard in the assessment.

While we have shown that a prior version of the AI

model appeared to be associated with some human inter-

pretable features,1 the correspondence is not necessarily

consistent, nor was the model designed for it to be so.

Generally speaking, we have observed that most AI

tests used in the laboratory do one of two things that

make them meaningfully different from our own bio-

marker, and limit the generalizability of prior methods

concerning laboratory implementation:

1. AI algorithms that quantify immunohistochemistry

(IHC) or other specially colored stains. Examples

include HalioDX (Now Veracyte) Immunoscore

or Cernostics (now Castle Biosciences) TissueCy-

pher algorithms.

2. AI algorithms that detect specific morphological

features, a prime example of which is PaigeAI’s

Paige Prostate algorithm.

Both types of algorithms are designed to detect specific

a priori established morphological features on a slide,

which implies that AV of these other assays can be eval-

uated by examining the degree to which the assay detects

the defined features of interest. For example, Immuno-

score relies on IHC stains for CD3 and CD8,5 making

the sensitivity and specificity of these antibodies to the

intended epitopes the critical components of the AV.

However, for an AI test that examines H&E, there is no

targeted stain in use. H&E do have differential affinities

for different structures within cells and tissues, making

them useful stains, but they provide this color to cellular

and tissue structures by binding to or complexing with a

large number of different types of molecules with varying

affinities, making each stain individually highly non-spe-

cific for any particular molecule, in contrast to IHC.7,8

Therefore, studying analytical performance of the probes

in a test, where the probes are H&E, is not helpful in

establishing analytical performance of the test.

Alternatively, AI, such as Paige Prostate, is intended to

examine H&E. However, this AI is intended to provide

information about specific human-identifiable morpho-

logical or pathological features in the slide and provide

a location. Therefore, studies regarding the ability of

the AI to detect these established features provide infor-

mation about analytical performance, but this has limited

relevance to ArteraAI Prostate Test.

For example, the FDA Clearance Summary for Paige

Prostate describes a localization study, which is impor-

tant for AI that seeks to show pathologists where mor-

phology concerning for cancer is located on the slide.17

However, the ArteraAI Prostate Test is not intended to

highlight pathological morphology on a glass slide, but

rather to prognosticate outcomes and predict benefit

from therapy based on the full specimen it is shown.

Moreover, it does this without restricting itself to detec-

tion of a priori established features that can be used for

investigation of analytical performance.

Notably, following the performance of the experiments

in the current report (but before publication), AV of another

H&E prognostic test was published,18 but this prognostic

Table 2. Analytical Accuracy

Model ICC (95% CI)

Prognostic 0.993 (0.986–0.996)

ST-ADT 0.934

ICC, intraclass correlation coefficient; ST-ADT, short-term androgen
deprivation therapy.

Table 3. Reliability Studies

Study

Prognostic model ST-ADT model

ICC 95% CI Percent agreement

Intra-operator, inter-day

study

0.981 0.965–0.990 100.000

Inter-operator study 0.994 0.988–0.997 93.333

Biopsy completeness:

1 vs. 3 cores

0.894 0.828–0.935 91.667

Biopsy completeness:

1 vs. 6 cores

0.857 0.772–0.912 95.000
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test is many ways more similar to Paige Prostate than to

ArteraAI Prostate Test as this test uses AI to detect pathol-

ogist identified features, and algorithmically uses the pa-

thologist identified features to prognosticate outcomes.

While we report on AV of a specific laboratory test,

this study has broader implications as a first of its kind

publication on AV of AI applied to H&E-stained tissue

that makes inferences about the disease outcome rather

than specific slide findings. While we have performed

this AV on a test that uses H&E stained specimens, our

AV methodology could generally be seen as applying

to laboratory tests that use AI on non-specific stains

more generally, or potentially even unstained tissue.

The studies comparing one versus multiple cores are

interesting not only regarding the validation of this spe-

cific test, but also because of the implications that they

have on prostate cancer biological heterogeneity. These

results show that while the test performs reasonably

well with one versus multiple cores, there is sensitivity

to the selection of tissue used for testing.

However, this is a limitation that the AI test shares

with gene expression testing, which appears quite sensi-

tive to the choice of tumor focus for testing.19 This is

not surprising given that heterogeneity within tumors is

a well-known phenomenon that is thought to contribute

significantly to treatment resistance and may predispose

patients to worse clinical outcomes.20 In general, little

has been done in clinical testing to date to consider intra-

tumoral heterogeneity, which tends to require specialized

tools such as spatial genomics, that are limited largely to

the research setting. Image analysis AI may offer an ad-

ditional mode of research to study intratumoral heteroge-

neity, and may 1 day offer a feasible method for clinically

assessing intratumoral heterogeneity in patients.

Therefore, this is a limitation that seems to be caused

by prostate cancer rather than a limitation unique to

image analysis AI. However, from the standpoint of clin-

ical use, AI may have an operational advantage over ge-

nomics since AI does require any additional tissue

beyond a diagnostic H&E stained slide. When there is in-

sufficient tissue for reliable genomic testing of the high-

est grade core, either genomic testing cannot be done, or

it must be done on a different core, which may yield a dif-

ferent result from the primary core.

However, image analysis AI can be performed on the

original diagnostic H&E stained slides, making testing

of the highest grade core virtually always feasible unless

the slide containing this core is damaged.

There are a number of important limitations of this

study. Perhaps the most important limitation concerns

scanner generalizability. While the study shows that the

AI model generalized well from the research setting

using a Leica AT2 to the clinical setting using a 3DHistech

P1000, this should not be understood to imply that either

the AI models studied here or AI models more generally

are scanner agnostic. In exploratory work, we have found

substantial differences between scanners and deliberately

designed models to be insensitive to scanner differences.

The detailed computational approach to this will be the

topic of a future manuscript. In general, our approach cor-

rected for color differences, which are due to the ways

different scanners capture red, green, and blue channel

data. A description of this work is outside of the scope

of this manuscript. At this point, we believe that valida-

tion should be performed on a specific scanner model be-

fore the AI is trusted to work on that model of scanner. In

our case, we used a concordance study between scanner

models to establish generalizability.

An additional limitation is the use of prostate core

count as the unit of measurement in quantifying the

amount of tissue used. This measure makes sense in the

case of prostate biopsies for which there are cores, but

this approach would not generalize well to pathology

cases not based on cores, such as surgical excisions.

Conclusion
We have developed an approach for AV of a prognostic

algorithm and an ST-ADT response algorithm applied

to H&E stained tissue specimens and applied this ap-

proach to the AV of novel prostate AI LDT. The analyt-

ical performance of the test as assessed by these

techniques supports adequacy for clinical use.
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