

Introduction

Need for improved tools to personalize therapy in patients with prostate cancer

- Prostate cancer is the second most common cancer among men, with over 375,000 deaths worldwide¹
- Improved prognostic and predictive tools are needed to avoid over- and undertreatment and minimize prostate cancer-associated morbidity^{2,3}

Artificial intelligence (AI) to aid in personalization of prostate cancer treatment

- Artera has developed multimodal AI (MMAI)-enabled predictive and prognostic biomarkers for patients with prostate cancer using large datasets from thousands of patients enrolled in Phase 3 randomized clinical trials^{4,5}
- It is important to understand the broader utility of the MMAI biomarkers by validating these models across a spectrum of prostate cancer disease states
- Here, we present data on the validation of the prognostic and predictive MMAI biomarkers for use in a broader range of prostate cancer settings, including in patients with high risk and metastatic disease

Prognostic Biomarker Outperformed Standard Risk Stratification Tool⁴

MMAI Model Outperformed NCCN For All Endpoints

Prognostic Biomarker Identified a Greater Proportion of Low-Risk Patients Than NCCN

Localized

ST-ADT Biomarker Identified 66% of Patients Who May Not Need Hormone Therapy, **Avoiding Potential Toxicities Associated with ADT⁵**

Clinical Validation of a Multimodal Artificial Intelligence Prognostic Model in Localized and Advanced Disease

Emmalyn Chen^a, Sokha Nhek^a, Adriana Vela^a, Akinori Mitani^a, Douwe van der Wal^a, Siyi Tang^a, Hans Pinckaers^a, Rikiya Yamashita^a, Vinnie Liu^a, Yi Ren^a, Tamara Todorovic^a, Huei-Chung Huang^a, Jingbin Zhang^a, Jessica Keim-Malpass^a, Jacqueline Griffin^a, Scott Houck^a, Timothy Showalter^a, Felix Y. Feng^b, Andre Esteva^a ^aArtera Inc., Los Altos, CA

^bDepartment of Radiation Oncology, University of California San Francisco, San Francisco, CA

MMAI Risk Groups Demonstrated Prognostic Ability for Distant Metastasis

Localized

Manuscript in preparation

External Validation in High-Risk Disease⁶

Consistent Prognostic Performance of MMAI for Distant Metastasis by Subgroups

		No. of patients	sHR		
Variable	Subgroups	(no. of events)	(95% CI)		P valu
Total		318 (42)	2.4 (1.6-3.5)		<0.00
Arm	RT+ADT	161 (23)	2.5 (1.4-4.3)	_	0.00
	RT+ADT+CT	157 (19)	2.2 (1.3-3.7)	_	0.003
Age	<65	132 (22)	2.5 (1.5-4.2)		<0.00
	65+	186 (20)	2 (1.2-3.4)	_	0.006
Race	African American	83 (5)	4.8 (0.91-25)		0.06
	Non-African American	234 (37)	2 (1.4-2.9)	e	<0.00
Baseline PSA (ng/ml)	<20	135 (20)	2.7 (1.6-4.6)		<0.00
	20+	183 (22)	2.1 (1.2-3.7)	_	0.01
Gleason	7	105 (9)	1.6 (0.75-3.4)		0.22
	8-10	213 (33)	2.5 (1.6-4)	- >	<0.00
Clinical T Stage	T1-T2	215 (25)	2.5 (1.5-4.2)		<0.00
	T3-T4	102 (17)	2.2 (1.1-4.5)		0.02
			0 Better prognos	.5 1 1.5 2 3 4 is W	orse prognosis

Estimated Risk of Distant Metastasis by MMAI Quartile

High Risk Localized

LT-ADT Biomarker Identified 34% of Patients Who Could **Safely Avoid Long-Term Hormone Therapy**¹⁰

- An MMAI predictive biomarker was developed to predict additional benefit from long-term ADT (LT-ADT) over short-term ADT (ST-ADT) in men with high-risk localized prostate cancer receiving radiotherapy (RT)
- The model was trained on data from 2641 men enrolled in six phase III NRG/RTOG randomized clinical trials and validated using data from 1192 men participating in RTOG 9202
- LT-ADT biomarker (+) patients had reduced risk of distant metastases with LT-ADT over ST-ADT (subdistribution hazard ratio [sHR], 0.55; 95% confidence interval [CI], 0.41-0.73; P=0.001; n=785); no benefit was observed in LT-ADT biomarker (-) patients (sHR, 1.06; 95% CI, 0.61-1.84; P=0.84; n=407)
- A statistically significant biomarker-treatment interaction was observed (P=0.04)
- The biomarker identified 34% of men with localized high-risk prostate cancer who could derive similar benefit to LT-ADT with ST- ADT

Meta-Analysis of High-Risk Patients Demonstrated Consistent Prognostic Performance⁷

therapeutic benefit

MMAI Model Independently Prognostic for **Distant Metastasis in High-risk Patients**

MMAI Model Identified Substantial Differences in Absolute **Risk of Distant Metastasis in High-risk Patients**

MMAI High Risk Patients Demonstrated Improvement in Metastasis-Free Survival With Apalutamide

High Risk Localized

Conclusions

- The MMAI prognostic biomarker for localized prostate cancer demonstrated improved prognostication over the standard NCCN risk stratification tool⁴
- The MMAI prognostic model identified a greater proportion of patients with low-risk of distant metastasis compared to the NCCN risk stratification tool
- Similarly, the MMAI prognostic biomarker outperformed clinical and pathological variables in men at high risk for disease progression^{6,7}
- Using data from the phase 3 SPARTAN and STAMPEDE clinical trials, the MMAI prognostic biomarker was externally validated in patients with non-metastatic castrate-resistant prostate cancer and high-risk localized/metastatic prostate cancer, respectively^{8,9}
- The MMAI predictive biomarker identified patients who may benefit from the addition of ST-ADT to RT⁵
- Additionally, MMAI biomarkers were shown to predict benefit with LT-ADT over ST-ADT¹⁰
- Robust clinical validation of the prognostic model using clinical trial data in patients with localized and advanced prostate cancer exemplifies its use to accurately risk stratify disease, contributing to shared decision-making between patients and clinicians

Model Development and Validation Cohorts

External Validation in High-Risk Disease ⁶	Meta-Analysis of High-Risk Patients ⁷	Risk Stratification in nmCRPC ⁸	High-Risk Localized and Metastatic Disease ⁹	ST-ADT Predictive Biomarker⁵	LT–ADT Predictive Biomarker ¹⁰
NRG/RTOG- 9202, 9408, 9413, 9910, and 0126	NRG/RTOG- 9202, 9408, 9413, 9910, and 0126	NRG/RTOG- 9202, 9408, 9413, 9910, and 0126	NRG/RTOG- 9202, 9408, 9413, 9910, and 0126	NRG/RTOG- 9202, 9408, 9413, 9910, and 0126	NRG/RTOG- 9408, 9413, 9902, 9910, and 0521
4581	4581	4581	4581	2024	2641
NRG/RTOG-9902	NRG/RTOG 0521, 9202, 9408, 9413, 9902, 9910	SPARTAN (NCT01946204)	STAMPEDE (NCTOO268476)	NRG/RTOG-9408	NRG/RTOG-9202
318	1088	467	3167	1594	1192

Prognostic Risk Stratification in Non-Metastatic Castration-Resistant Prostate Cancer (nmCRPC)⁸

Patients Excluded (47)

Missing clinical data (n=45)

Inadequate H&E biopsy images (n=2)

SPARTAN Trial: CONSORT Diagram

Prognostic Risk Stratification in High-Risk Localized and Metastatic Disease⁹

MMAI Identified a Patient Population With Poorer Prognosis

nmCRPC

References

High-Risk Localized/Metastatic

- . Sung H et al. *CA Cancer J Clin.* 2021;71:209-249.
- 2. Cooperberg *MR et al. J Clin Oncol.* 2010;28:1117-1123.
- 3. Nalejska E et al. *Mol Diagn Ther.* 2014;18:273–284.
- 4. Esteva A et al. *NPJ Digit Med.* 2022;5. doi:10.1038/s41746-022-00613-w.
- 5. Spratt DE et al. *NEJM Evidence*. 2023;2. doi:10.1056/EVIDoa2300023.
- 6. Ross AE et al. SUO 2022 Poster 168.
- 7. Spratt DE et al. ASCO GU 2023 Presentation 299.
- 8. Feng FY et al. ASCO 2023 Poster 5035.
- 9. Parker C et al. ESMO 2023 Presentation 5238.
- 10. Armstrong AJ et al. ASCO 2023 Abstract 5001.

